Estimated Number of Interactions **Abstract:** The total number of neutrino interactions in the emulsion is estimated using the Monte Carlo with neutrino production estimates. ## **Analysis** The Monte Carlo is used for three main functions in this analysis: - 1. Generate vs in the dump - 2. Propagate vs to the emulsion target - 3. Assign a weight ∝ production kinematics - 4. Assign a weight ∝ interaction probability The separation of production weight and interaction weight is necessary here. As a reminder, the number of interactions is given as: $$N_{\text{int}} = \frac{N_v \, \sigma \, N_{\text{nucl}}}{Area} = \left(\frac{N_v}{pot}\right) (pot) \left(\frac{1}{Area}\right) (\sigma^{\text{const}}) \left(\frac{m_{\text{tgt}}}{m_{\text{nucl}}}\right) \sum E_i \cdot K(E_i) \cdot T_i \cdot t_i$$ where σ^{const} is the energy-independent part of the neutrinonucleon cross section, m_{tgt} is the emulsion target mass (e.g. the *pot*-weighted average), m_{nucl} the nucleon mass, E neutrino energy, K additional kinematic suppression (τ only), T the binary (0 or 1) for v in the target and t the binary for the trigger. $$F_e = \left(5.88 \times 10^{-4}\right) \left(3.54 \times 10^{17}\right) \left(\frac{1}{2400 cm^2}\right) \left(0.505 \times 10^{-38}\right) \left(\frac{260 kg}{1.66 \times 10^{-27} kg}\right)$$ Inserting numbers for the constant part yields This gives 68.7 for electron-neutrino interactions. The same number will be used for muon-neutrinos, and the value for tauneutrino interactions is 10.6. The values for number of neutrinos created per *pot* are from Emily's thesis. The part in the summation in the first equation is evaluated as one number for each flavor. | Flavor | N _v /pot | ΣEKTt | $F_{ m j}$ | П | |--------|-----------------------|-------|------------|-----| | e | 5.88×10 ⁻⁴ | 4.47 | 68.7 | 307 | | μ | 5.88×10 ⁻⁴ | 7.67* | 68.7 | 527 | | τ | 9.08×10 ⁻⁵ | 2.70 | 10.6 | 29 | The total number of triggered interactions is estimated to be 863. The total number of interactions ($t\equiv 1$) is 931. This may be low because to estimate the number of located events, we need to multiply by electronic, scan and location efficiencies. This is typically $0.68 \times 0.67 = 0.46$. Thus, our estimated number of located events is $0.46 \times 863 = 397$.